PHASE EQUILIBRIUM IN THE SYSTEM LaP₃O₉-NaPO₃-P₂O₅ The new compounds NH₄LaP₄O₁₂ and La₄(P₂O₇)₃

J. Kropiwnicka

Technological Institute of Chemical and Food Industry, Wrocław 53-326, Komandorska 118, Poland

(Received May 6, 1993; in revised form April 18, 1994)

Abstract

The phase diagram of the ternary system LaP₃O₉-NaPO₃-P₂O₅ was constructed through the use of a new compound NH₄LaP₄O₁₂. Ammonium lanthanum phosphate NH₄LaP₄O₁₂ crystallizes in the monoclinic system, space group C2/c, with a=7.941(4)Å, b=12.645(13)Å, c=10.702(9)Å, $\gamma=110.00(5)$. The compound melts incongruently at 1198°C. Lanthanum pyrophosphate melts incongruently at 1160°C.

Keywords: NH₄LaP₄O₁₂, La₄(P₂O₇)₃, phase diagram, system LaP₃O₉-NaPO₃-P₂O₅

Introduction

The purpose of the present paper is to report the phase diagram of the unknown system LaP₃O₉-NaPO₃-P₂O₅. It is limited by the following binary systems: LaP₃O₉-LaP₅O₁₄; LaP₅O₁₄-P₂O₅; P₂O₅-NaPO₃; and NaPO₃-LaP₃O₉. The phase diagram for the binary system NaPO₃-LaP₃O₉ with the compound NaLaP₄O₁₂ is known [5, 7-9]. Data on the fusion temperatures and structures of the metaphosphates Ln(PO₃)₃ and LaP₅O₁₄ are restricted to [7, 10-13]. The solid phases in the equilibrium system NaO₂-P₂O₅-H₂O have been reported [14]. Tananaev *et al.* [15-18] reported on the diphosphates P₂O₇⁴⁻: Ln³⁺=0.5:0.6 and Ln₄(P₂O₇)₃xH₂O, where Ln=La, Gd, Sm and Y.

Experimental

The following starting materials were used: NaPO₃, sodium metaphosphate (POCH), and a new ammonium lanthanum polyphosphate, $NH_4LaP_4O_{12}$, which was obtained by the following method [1].

NH₄H₂PO₄, ammonium hydrophosphate (POCH), La₂O₃ (99.99%) and NaLaO₂ were mixed together and ground in an agate mortar in the mass ratio 7:1. 5:0. 87 and then heated in the interval 180–220°C for 20 min. In the second step, the mixture was heated to 700°C at a rate of 10 deg·min⁻¹. Queinching in air led to ammonium lanthanum polyphosphate with the formula NH₄LaP₄O₁₂, which was washed with water.

Powder LaP_4O_9 was obtained from crystals of $NH_4LaP_4O_{12}$ which were heated in the interval 700-1000°C for 0.5 h.

$$NH_4LaP_4O_{12} + NH_4H_2PO_4 \xrightarrow{\text{heat}} 2NH_3 + 2H_2O + P_2O_5 + LaP_3O_9$$

 LaP_5O_{14} was also used as a starting material. Ultraphosphate LaP_5O_{14} was synthetized by the solid-state reaction from lanthanum metaphosphate, LaP_3O_9 , and $NH_4H_2PO_4$ (POCH):

 $LaP_{3}O_{9} + 2 NH_{4}H_{2}PO_{4} = LaP_{5}O_{14} + 2 NH_{3} + 3 H_{2}O$

Samples in the binary system and the ternary system were synthetized from $NaLaP_4O_{12}$, LaP_3O_9 , LaP_5O_{14} , $NaPO_3$ and $NH_4H_2PO_4$ in open platinum and gold crucibles.

Temperature was measured with a Pt/PtRh 10 thermocouple. In thermal studies involving heating, a MOM 3427 derivatograph was used with photographic recording over the temperature range from 20 to 1300°C.

The operating conditions used were as follows: sensitivity 150 mg, heating rate 7.5 deg·min⁻¹. Al₂O₃ was used as a standard material. In the thermal studies involving cooling, an LP 839 temperature programmer (Chinoin, Budapest) was used.

Infrared absorption data were obtained with a Perkin-Elmer instrument (University of Wrocław). The samples were pressed in KBr pellets and mixed in a Nujol suspension. Unit cell parameters for $NH_4LaP_4O_{12}$ were determined from Syntex P2₁ (University of Wrocław).

Results and discussion

Single-crystal X-ray analysis proved that the compound is NH₄LaP₄O₁₂, which is stable at elevated temperatures. Preliminary X-ray data are: system monoclinic, space group C2/c, with a=7.941(4) Å; b=12.645(13) Å; c=10.702(9) Å; $\gamma=110.00(5)$.

Diffractometer-collected data were reduced in a standard way, the absorption correction being allowed for by using the program DIFABS. The refinement led to $R_1=3.7$ and $R_2=4.6\%$. The structure consists of PO₄ tetrahedra linked to form tetracycles, LaO₈ dodecahedra and NH⁴₄ tetrahedra octahedrally sur-

rounded by O atoms. The La–O bond lengths varybetween 2.473(6) and 2.520(5) Å, the dodecahedron resembling that found in LaP₃O₉ [2, 3]. The crystals are isomorphous with those of NH₄PrP₄O₁₂ [4] and unpublished data of Matuszewski and Kropiwnicka.

NH₄LaP₄O₁₂ melts incongruently at 1198°C with a peritectic reaction at 848°C. From the crystals, ammonium lanthanum phosphate and lanthanum metaphosphate were obtained in 100% yield. The purity of the compound was checked by means of X-ray and IR spectroscopy. LaP₃O₉ had the following unit cell parameters: a=11.27 Å; b=8.60 Å and c=7.36 Å [2, 3].

Phase diagram of the binary system LaP₅O₁₄-NaPO₃

The phase diagram of the system LaP₅O₁₄–NaPO₃ is presented Fig. 1. The thermal points were obtained via thermal (heating and cooling) analyses and microscopic, X-ray and visual analyses (Technological Institute of Chemical and Food Industry). Samples from this system form glazes, decompose quite easily and are very hygroscopic. The phase diagram of sodium metaphosphate and lanthanum ultraphospate has a eutectic character. The eutectic occurs at 25 wt% LaP₅O₁₄ and 75 wt% NaPO₃ at 520°C. The polymorphic transformations α/β and β/γ -NaPO₃ occurred throughout the composition range as strong thermal effects in the heating curves. The experiment was carried out with monocrystals of LaP₅O₁₄.

Fig. 1 Phase diagram of the system LaP₅O₁₄-NaPO₃

Fig. 2 Phase diagram of the system NaLaP₄O₁₂-LaP₅O₁₄

Phase diagram of the binary system NaLaP₄O₁₂-LaP₅O₁₄

Figure 2 presents the phase diagram of the system NaLaP₄O₁₂-LaP₅O₁₄, which was obtained from thermal and X-ray analyses using monocrystals of NaLaP₄O₁₂ and LaP₅O₁₄ according to the methods described in [6]. The monocrystals of NaLaP₄O₁₂ were obtained as the low-temperature γ -NaLaP₄O₁₂ form [5]. The eutectic consists of 30 wt% NaLaP₄O₁₂ and 70 wt% LaP₅O₁₄ at 715°C. The system was very difficult to work with because of the crystallization of all samples as glazes. The samples rich in LaP₅O₁₄ decomposed very easily into P₂O₅ and La₂O₃ at high temperatures.

The polymorphic transformations α/β -NaLaP₄O₁₂ (820-750°C) and β/γ -NaLaP₄O₁₂ (350°C) occurred throughout the composition range. The thermal effects for α/β -NaLaP₄O₁₂ (820-750°C) corresponded with the thermal effect from the eutectic.

The discussed binary systems divide the studied partial system LaP_3O_9 -NaPO₃-P₂O₅ into the following three partial ternary systems:

1. LaP_3O_9 -Na LaP_4O_{12} -La P_5O_{14}

2. LaP_5O_{14} -Na LaP_4O_{12} -La P_5O_{14}

3. LaP_5O_{14} -NaPO₃-P₂O₅

In the ternary system LaP_3O_9 -NaLaP₄O₁₂-LaP₅O₁₄, the ternary eutectic 32 wt% La₂O₃, 3.8 wt% Na₂O, 63.8 wt% P₂O₅ crystallizes at 700°C, with four yields of the first crystallization:

1. e_2E_3 -NaLaP₄O₁₂ + LaP₅O₁₄

2. $e_{16}E_2$ -LaP₃O₉ + NaLaP₄O₁₂

3. $e_{14}E_3$ -LaP₃O₉ + LaP₅O₁₄

4. p_1p_3 , where we deal with the binary peritectic reaction $c_{p_1p_3} + LaPO_4 = LaP_3O_9$.

The ternary system NaLaP₄O₁₂-NaPO₃-LaP₅O₁₄

In the ternary system NaLaP₄O₁₂-NaPO₃-LaP₅O₁₄, samples were insoluble together in the solid state and formed a ternary simple eutectic at 460°C with the composition 4 wt% La₂O₃, 24 wt% Na₂O, 72 wt% P₂O₅.

The ternary samples in the ternary system LaP_5O_{14} -NaPO₃-P₂O₅ were synthetized from NaPO₃, monocrystals of LaP₅O₁₄ and NH₄H₂PO₄ in open crucibles in two steps:

1. at 180°C for from 10 to 20 min.

2. at 300°C for from 25 to 40 min.

In the thermal studies, the thermal effects were observed during heating. The effects were used to construct the isotherms in the phase diagram for LaP₃O₉–NaPO₃–P₂O₅. The ultraphosphate LaP₅O₁₄ and P₂O₅ form a simple eutectic e_1 with the composition 84 wt% P₂O₅ and 16 wt% La₂O₃ at 220°C.

Synthesis of $La_4(P_2O_7)_3$

0.0867 g NaLaO₂ was mixed with 0.1357 g La₂O₃ (USSR) and 0.6750 NH₄H₂PO₄. The sample was heated in a gold crucible in a kantal furnace at 180°C for 15 min. The molar ratio was 5:1:0.6.

Next, the mixture was heated to 700°C at a rate of 5 deg \cdot min⁻¹ and quenched in air. Crystalline NH₄LaP₄O₁₂ was obtained and washed with water. The compound NH₄LaP₄O₁₂ forms a hydrate of formula NH₄LaP₄O₁₂·H₂O. Loss of the water occurs at 478°C, and the loss in weight is 1.33%.

Crystalline ammonium lanthanum polyphosphate was heated slowly in a gold crucible under pressure to 280°C for 5 h:

 $4NH_{4}LaP_{4}O_{12} \quad \frac{280^{\circ}C}{pressure} \quad 4NH_{3} + 2.5P_{4}O_{10} + 2H_{2}O + La_{4}(P_{2}O_{7})_{3} = \frac{700^{\circ}C}{open} \quad 4LaP_{3}O_{9} + 4NH_{3} + 2H_{2}O + 2P_{2}O_{5}.$

The compound was assigned the following formula: $La_4(P_2O_7)_3$. The purity of the phosphate was checked by IR spectroscopy. The IR spectrum was measured in KBr pellets and Nujol suspension (University of Wrocław) for $La_4(P_2O_7)_3$ and shows clear bands for the valence frequencies of the pyrophosphate group $P_2O_7^{4-}$ at 735 cm⁻¹ vs. (P-O-P) [19].

The pyrophosphate melts incongruently at 1160°C and appears in one polymorphic form (Enterprise of the Cooling Industry, Wrocław).

* * *

The author thanks Mrs. B. £agódka for technical assistance (thermogravimetric analyses).

References

- 1 J. Kropiwnicka, Patent PRL nr 266677.
- 2 J. Matuszewski, J. Kropiwnicka and T. Znamierowska, J. Solid State. Chem., (1988).
- 3 J. Matuszewski, J. Kropiwnicka and T. Znamierowska, Xth European Crystallographic Meeting W-w 5-9 August 1986, 2C-33, 1986, p. 275.
- 4 R. Masse, J. C. Guitel and A. Durif, Acta Crystal., B33 (1977) 630.
- 5 J. Kropiwnicka, J. Thermal Anal., 34 (1988) 1405.
- 6 J. Kropiwnicka and T. Znamierowska, Biuletyn Urzędu Patentowego PRL P 259778 (1987).
- 7 J. Kropiwnicka, Thesis (November 1986).
- 8 B. Hassen, N. Ariquib, M. Dabbabi and M. Trabelsi, C. R. Acad. Sc. Paris t. 294 (1982) 375.
- 9 E. N. Fedorova, K. Shmatok, I. I. Kozhina and T. R. Barabanova, Neorg. Mater., (1986) 22. 10 I. A. Bondar, Khim. Red. Elem. Moskva, Nauka 1983.
- 11 E. Agraval and F. A. Hummel, J. Electrochem. Soc., 127 (1986) 1550.
- 12 H. D. Park and E. E. Kreidler, J. Am. Cer. Soc., 67 (1984) 23.

- 13 J. Kropiwnicka and T. Znamierowska, J. Solid State Chem., 73 (1988) 405.
- 14 P. Taylor, P. R. Tremaine and M. G. Bailey, Inorg. Chem., 11 (1979) 2947.
- 15 I. W. Tananaev and W. P. Wasileva, J. Neorg. Khim., 9 (1964) 2111.
- 16 I. W. Tananaev and W. P. Wasileva, J. Neorg. Khim., 9 (1964) 2284.
- 17 I. W. Tananaev and S. M. Petushkova, J. Neorg. Khim., (1966) 11, 282.
- 18 I. W. Tananaev and G. W. Shevthenko. Izw. Akad. Nauk USSR Neorg Mater., 1 (1965) 369.
- 19 N. H. Calvo, Canad. J. Chem., 51 (1973) 2613.

Zusammenfassung — Unter Einsatz der neuen Verbindung NH₄LaP₄O₁₂ wurde das Phasendiagramm des ternären Systemes LaP₃O₉-NaPO₃-P₂O₅ erstellt. Das Ammoniumlanthanphosphat NH₄LaP₄O₁₂ kristallisiert im monoklinen System, Raumgruppe C2/c mit a=7.941(4)Å, b=12.645(13)Å, c=10.702(9)Å, $\gamma=110.00(5)$. Die Verbindung schmilzt inkongruent bei 1198°C. Lanthanpyrophosphat schmilzt inkongruent bei 1160°C.